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Table 7-1  General features and processes common to many types of sensory receptors

Transduction operations® Found within single cells Found in cell populations

Detection Mechanisms that select stimulus modality: Mechanisms that select stimulus modality:
l filters, carriers, tuning, inactivation filters, carriers, tuning, inactivation

Amplification Positive feedback among chemical reactions ~ Positive feedback among cells
or membrane channels Signal-to-noise enhancement
Signal-to-noise enhancement
Active processes in membranes

Encoding and discrimination Intensity coding Different dynamic ranges among cells
Temporal differentiation Independent coding of quality and intensity
Quality coding Center-surround antagonisms
Opponent mechanisms

Adaptation and termination Desensitization Temporal discrimination
Negative feedback .
Temporal discrimination
Repetitive responses

Gating of ion channels Channels open or close

l

Electrical response of membrane  Depolarization or hyperpolarization

l

Transmission to brain

Electrotonic spread Spatial patterns: maps and image formation
Number and frequency of APs Temporal patterns; directional selectivity, etc.

Synaptic transmission

* Arrows indicate that these operations are a series of steps.
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(a) Muscarinic acetylcholine receptor
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(b) Photoreceptor
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G protein  Effector Second-messenger
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Figure 7-3  The molecular mechanism of sensory
reception in visual photoreceptors resembles the molecular
mechanism of neurotransmission at many synapses.
Muscarinic neurotransmission (a) and vision (b) both begin
with a structural change in a transmembrane protein (the
receptor molecule), which interacts with a GTP-binding
protein (G protein) to act on intracellular second messengers.
The second messengers modify conductance through ion
channels, either directly or indirectly, and can thus modify the
pattern of APs in afferent neurons. (c) The detailed molecular
structure of opsin and its relationship to retinal have recently
been determined. A single opsin molecule contains seven
helical domains that span the membrane. This motif of seven
sequential transmembrane helices is common in sensory
receptor proteins, as well as in many receptor molecules that
respond to hormones or to neurotransmitters, including
muscarinic receptors. [Parts a and b adapted from Bear et al,
1996; part ¢ adapted from Bourne and Meng, 2000.]
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Extracellular fluid
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Figure 7-17  Each quality of taste is transduced by a
519181881818 8" $878'8'8'8'8"8" distinctive mechanism. (a) In the transduction of salty and
DOV QOO + ES 8 hi s
some sour tastes, Na* (or H*) ions pass through amiloride-
(k¥ sensitive Na* channels in the apical membrane of the taste
) Alanine, some sweet Adenylate CAMP closes receptor cell, directly depolarizing the receptor cell. (b) In
wr— Ala cyclase K* channel

the transduction of other sour tastes and some bitter tastes,
protons (sour) or certain bitter compounds block K* channels,
allowing the slow resting leakage of Na™* into the cell to
L5080 DO depolarize the receptor. (c) L-Alanine (Ala) and some other
nsveier o y, Q sweet c_ompounds bind to receptors that activate a G protein.
ATP  cAMP @ The activated G protein then activates adenylate cyclase, and

T — the resulting increase in cCAMP closes K* channels in the
Arg—m (@ Cations, including Ca?* basolateral membrane, allowing the small resting influx of

: DO QO Na™ to depolarize the cell. (d) L-Arginine (Arg) and some
sweet compounds bind to and open a ligand-gated,
nonselective cation channel. (e) Some bitter compounds bind
to a receptor and activate a G protein (which might be the
recently identified G protein gustducin) that is thought to
) Some bitter increase the activity of phospholipase C (PLC), producing an
_¥— Bitter compound increase in the synthesis of intracellular inositol trisphosphate
(IP3) from phosphoinositol 4,5-bisphosphate (PIP,). An
increase in IP; releases Ca®* from intracellular stores, and the

L AASAAA, increase in intracellular [Ca?*] increases the release of

e 3 \_/,'P 3 neurotransmitter from the receptor ce!l. [Adapted from Bear
(perhaps gustducin) *3 2 et al., 1996, and from Herness and Gilbertson, 1999.]

Causes release of Ca2*
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Obr. 16-26: Hedovy zény: Na obrdzku je zndzornén princip pfenesené
bolesti (referred pain) z vnitfnich orgdnti na kuzi. 1 - srdce; 2 - jicen; 3 -
Zaludek; 4 - jatra a Zaludek; 5 - pankreas; 6 - pupek; 7 - apendix a tenké
stfevo; 8 - prava ledvina; 9 - leva ledvina; 10 - tlusté stfevo; 11 - mocovy
méchyr.

Obr. 16-27: Aurikuloakupunktura. Projekce riznych organi a systému
na usni boltec. 1 - zevni pohlavni organy; 2 - mocovod; 3 - mocova
trubice; 4 - kone¢nik; 5 - Zaludek; 6 - ceslo Zaludky; 7 - slezina; 8 - plice
a srdce; 9 - pradusky; 10 - mozkovy kmen; 11 - pradusinky; 12 - udni
Zldza; 13 - bod pro bolest zubt; 14 - vrchol lebky; 15 - bod vysokého
tlaku; 16 - analgezie béhem extrakce zubu; 17 - neurorastenie; 18 -
adenoidni vegetace; 19 - appendix.




Smér pohybu
Hyperpolarizace @-=——=——f Depolarizace

Proteinovy
filament

Obr. 17.2. Transdukce mechanického podnétu na viaskovych bun-
kach. Pohybliva doména kationtového kanalu jednoho vlasku (ci-
lie) je spojena se sousednim viaskem. Vzajemny pohyb cilii vede
k otevirani a zavirani kanalu a vzniku receptorového potencialu.
Pohyb doprava depolarizuje, doleva hyperpolarizuje.
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Figure 2 The facial pits of rattlesnakes contain extraordi-
narily sensitive thermoreceptors. (a) Structure of a facial pit in
the rattlesnake Crotalus viridis. (b) The position of the facial
pits makes thermoreception directionally sensitive. [Adapted
from Bullock and Diecke, 1956.]
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Proudovy smysl ryb a obojzivelniku

Cilium
embedded

/ in cupula

Hair cell

Figure 7-25  The lateral-line sensory system of fishes and
amphibians, which detects motions in the surrounding water,
is based on hair cells. The drawing shows the location of these
mechanosensory organs along the body of an African clawed
frog (Xenopus). The inset shows four units along the lateral
line. The lower diagram shows a cross-section through part of
the lateral line, illustrating the cupula, an accessory structure
that bends the cilia of hair cells when it is displaced. Compare
the structure of this organ with the hair cells shown in Figure
7-24.
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Classic.  Figure 7-26  Statocysts sense position and and final angle and the time course of the tilt. Notice that this
A_“f”;“' acceleration with respect to gravity. (a) Structure of a receptor is tonically active any time the animal is tilted
statocyst in a lobster. A statolith rests on an array of between 10 and 25 degrees. (c) Frequencies of APs recorded

ciliated cells that, unlike vertebrate hair cells, themselves send from different fibers plotted as a function of the position of the
axons to the brain. (b) Action potentials recorded from animal. Each cell responded with a maximum rate of discharge
individually dissected nerve fibers while a lobster was being when the animal’s body was held at a particular position, and
tilted. All three recordings show the response of a single the orientation that produced a maximal response varied
receptor, and the trace below the recording indicates the initial among fibers. [Adapted from Horridge, 1968.]
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Figure 7-29  Sound stimuli are transduced by hair cells
in the cochlea. (a) Cross-section through cochlear canal,
made at about the location illustrated in Figure 7-27b,
showing the two outer chambers (the scala vestibuli and the
scala tympani) and the organ of Corti attached to the basilar
membrane in the scala media. (b) Enlargement of the organ
of Corti. The cilia of all hair cells are bathed in endolymph.
In addition, the cilia of the outer hair cells are embedded in
the gelatinous layer of the tectorial membrane. The basal
ends of the outer hair cells connect to the basilar membrane
through Dieter’s cells. Pillar cells provide structural support
for the organ of Corti. Both inner and outer hair cells contact
neurons, although for the sake of clarity only the fibers
extending to the inner hair cells are shown in this diagram.
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FIGURE 46-15

Frequency localization in the co-
chlea. The cochlea is shown un-
wound at the top, while the
resonance of the basilar membrane
in response to different sound fre-
quencies (tones) is illustrated be-
low. The parts of the basilar
membrane nearest the oval win-
dow resonate preferentially to
sounds of high frequency; at in-
creasing distances from the oval
widow progressively lower reso-
nant frequencies are encountered.
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(a) The experimental setup

il < ~x ; “ v

(b) Magnet in normal orientation (c) Magnet in reversed orientation

The pigeons’ orientation

was normal when the The pigeons reversed their

induced magnetic field was direction of initial flight when

pointed downward. the induced magnetic field
pointed upward.

Figure 17.9 Changing the magnetic field changes the orientation
of released pigeons (a) A small Helmholtz coil is shown attached to
a pigeon’s head, with a power pack on the pigeon’s back. Reversing the
direction of electrical current flow through the coil reverses the direc-
tion of the magnetic field. (b, ¢) Pigeons with Helmholtz coils were
released south of home on overcast days. They interpreted the direc-
tion in which magnetic lines dip into Earth as north. Each dot outside
the circle represents the direction in which a released pigeon vanished
over the horizon. The arrow at the center of each circle is the mean
vanishing bearing for the group. (After Walcott and Green 1974.)
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magnetického pole Zemé
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Figure 1  Specialized receptors allow animals to respond to
tiny changes in their environment. (a) Weakly electric fishes
have an electric organ, located near the posterior of the body,
that produces an electric field. This electric field can be
detected by electroreceptors distributed on the body surface.
(b) At the base of each electroreceptor pore lies an
electroreceptor cell whose apical membrane has a low
electrical resistance compared with that of its basal
membrane. These receptor cells release transmitter molecules
spontaneously. Current entering the cell depolarizes it,
increasing the rate of transmitter release and hence the
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transmitter release. The amount of transmitter released by
the receptor cell changes when V,,, is altered by only a few
microvolts.
classic . (€©) Relation between stimulating voltage of an
okt electroreceptor cell and the frequency of APs in the
) primary afferent axon of a neuron that receives
input from an electroreceptor. [Parts b and ¢ adapted from
Bennett, 1968.]
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Orientace holuba podle slune¢niho kompasu a vnitrnich hodin

(a) Normal circadian clock

35

(b) Circadian clock set ahead 6 hours

Figure 17.5 Homing pigeons use a sun
compass on sunny days The direction in
which individual pigeons vanished over the
horizon from a release point north of home.
(a) Control pigeons oriented in the home-
ward direction (south) when released at any
time of day. They used the sun'’s position and
their internal circadian clocks to determine
which direction was south. (b) Pigeons
whose circadian clocks had been shifted 6
hours ahead misinterpreted the sun’s posi-
tion and departed approximately 90° to the
left of the homeward direction. If released at
9:00 Am, they thought it was 3:00 pm and
departed 45° to the left of the sun’s position
(appropriate for 3:00 Pm).
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Figure 17.7 Planetarium experiments demonstrate that noctur-
nally migrating birds use star patterns for orientation Indigo
buntings were raised so that they could see the night sky but not local
landmarks. The orientation preferences of their migratory restlessness
(indicated by the radiating black lines) were then tested in a planetari-
um with either normal star patterns (a) or star patterns reversed in
direction (b). The results for two buntings shown here reveal that the
star pattern is the dominant determinant of orientation direction.
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Figure 17.6 Polarization of sky light
can aid in determining the sun’s posi-
tion (a) The blue sky results from reflect-
ed scatter of blue and ultraviolet sunlight
by particles in the atmosphere. Sunlight is
unpolarized; its electrical vector (e-vector)
is at right angles to the direction of propa-
gation of the light wave, but it can be at
any direction. The insets show end views
looking into the light; for unpolarized
light, arrows show e-vectors at all orienta-
tions. In contrast, the reflected light is
polarized, with its e-vector in only one
direction (here shown as horizontal in the
end view). (b) The pattern of polarized
light at two solar positions: 25° (left) and
60° (right) above the horizon. The plane of
polarization is at right angles to the plane
of light scattering, and the degree of
polarization (indicated by the thickness of
the orange bars) is strongest at 90° from
the sun. (b after Wehner 1997.)
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Figure 7-38  The spectrum of electromagnetic radiation
encompasses a broad range of energy that is detected by
various sensory modalities. Most photoreceptors detect energy
in the “visible” range, shown in this diagram, but some can
detect light in the ultraviolet range as well. The pit organs of
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some snakes can detect infrared radiation, although they
appear to measure the increased temperature of surrounding
tissue that has absorbed the infrared energy, rather than
responding directly to the infrared radiation (see

Spotlight 7-2).
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Kvalita vidéni slozenym okem hmyzu a komorovym okem
obratlovcu
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Figure 7-34  Compound eyes produce mosaic images, receptor cell samples a small part of the visual field through
whereas the optics of simple vertebrate eyes produce higher lens that is shared by all receptor cells. (Right) The same
spatial resolution. (a) (Left) In a compound eye, each butterfly as it might be perceived by the vertebrate eye.
ommatidium samples a different part of the visual field Arrows show that the optics of a vertebrate eye invert the
through its own separate lens. (Right) The image of a butterfly image on the retina, whereas the optics of a compound eye
as it might be perceived by a dragonfly through its compound do not. [Adapted from Kirschfeld, 1971, and Mazokhin-
eyes at a distance of 10 cm. (b) (Left) In a vertebrate eye, each Porshnyakov, 1969.]
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Obr. 78

Slo%ené o&i &lenovcd

celkovy pohled na sloZené oko,

detai}ni stavba apoziZnfho omatidia na podélném fezu,
na pfilnych Pezech v urovnich oznalenych &ipkami,
superpoziénf{ omatidium pFfi malém zv&tSent

a = facgta, b = kfi3fdlovy kuzel, ¢ = rhabdom, d = zra-
koy4 bunka (primdrn{ bunka smyslovd), e = pigmentovd
bunka, f = pervové vjb&%ky zrakovych bun&k, g = kri3fs-
lotvornd bunka




u

Komorové oko obratlove

43

o

e




Bélima

Spojivka

Cévnatka
Zavésny vaz

Fovea

Rohovka Coéka Sklivec centralis

Zornice
Duhovka

M. ciliaris

Zrakovy nerv

Sitnice

Obr. 17.9. Schéma sav¢iho oka a jeho soudasti.
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Figure 7-37  In the mammalian eye, incident light is
refracted by the cornea and the lens and is focused on the
photosensitive retina. In this diagram, the refraction of light
has been simplified: refraction at the air-cornea interface is
omitted, even though this boundary in reality provides most of

Optic axis

Optic nerve

Retina Choroid

Sclera

Pigment epithelium

the refraction. The image focused on the retina is inverted by
the lens. The lens is held in place by the zonular fibers. When
ciliary muscle fibers contract, tension on the zonular fibers is
reduced, and the elastic properties of the lens cause it to
become more rounded, shortening the focal length.
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Srovnani struktury oka u ruznych obratlovcu
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Obr. 221, Struktura sitnice obratlovcﬁ.
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Membranové déje probihajici pri fotorecepci
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Fotochemie vidéni u bezobratlych

a) b)
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Figure 7-42 Illumination reduces the dark current in
vertebrate rods and cones. This diagram illustrates the current
in rods. The gy, across the membrane of a rod outer segment
(©) is high in the dark (a) and lower in the light (b). For this
e reason, the dark current, which is carried by Na™* ions

entering the outer segment, drops during illumination. By
analogy with an equivalent circuit (c), the “battery” providin;
Out the driving force for the dark current is the asymmetry of ioni
concentrations maintained across the plasma membrane by
the Na*/K* pump. The light-inactivated variable resistor (Ry,
Na pump represents the gy, of the outer segment. [Adapted from
Equivalent circuit Hagins, 1972.]
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Obr. 17.10. Membranové dé&je pfi fotorecepci na tygince. Na vnitfnich membranovych discich je vézan pigment rhodopsin. Dopad svétla
vyvola jeho rozpad. Meziprodukt metarhodopsin Il spousti aktiva&ni kaskadu zavrSenou hydrolyzou cytoplazmatického cGMP na GMP.
Pokles koncentrace cGMP zavira u obratlovct Na* kanaly za vzniku hyperpolarizaéniho receptorového potencialu.
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